Devoir de synthèse n°3 Année Scolaire 1999-2000 2ème Année.

Exercice n° 1:

On donne les fonctions f et g définies sur IR par : $f(x) = \frac{-2}{x+2}$ et $g(x) = \frac{1}{2}(x+1)^2$

- 1) Etudier f et g et tracer dans repère orthonormée (O, \vec{i}, \vec{j}) les courbes représentatives C_f et C_g .
- 2) On pose $h(x) = \frac{1}{2}x^2 + x \frac{3}{2}$
 - a) Montrer que h(x) = g(x) 2 puis tracer C_h à partir de C_g et donner le tableau de variation de h.
 - b) Résoudre graphiquement l'inéquation $\frac{1}{2}x^2 < -x + \frac{3}{2}$.
- 3) On pose $k(x) = \frac{1}{|x+2|}$.
 - a) Tracer la courbe C_k à partir de C_f puis donner le tableau de variation de k.
 - b) Résoudre graphiquement $\frac{1}{|x+2|} < 1$.

Exercice n° 2:

Dans un repère orthonormé (O, \vec{i}, \vec{j}) on donne le point I (5, 4).

- 1)Ecrire une équation cartésienne de Cle cercle de centre I de rayon 5 puis montrer que Cet l'axe des ordonnées : (y'y) sont tangents en un point T dont-on précisera les coordonnées.
- 2) Le cercle \mathscr{C} coupe l'axe des abscisses (x x) en deux points A et B. Chercher les coordonnées de A et B puis montrer que $OA. \times OB = OT^2$.
- 3) On pose Δ_A et Δ_B les tangentes au cercle \mathscr{C} en A et B.
 - a) Ecrire une équation cartésienne pour chacune des droites Δ_A et Δ_B .
 - b) Chercher les coordonnées du point C le point d'intersection de Δ_A et Δ_B .
 - c) Calculer l'aire S du triangle ABC.
- 4) On pose \mathscr{C} ' = { M(x, y) ; $x^2 + y^2 + 2x + 8y m^2 + 3m 10 = 0$ } où m est un paramètre réel.
 - a) Montrer que \mathscr{C} 'est un cercle pour tous $m \in IR$.
 - b) Donner le centre I' du cercle \mathscr{C} ' pour m=2 et montrer dans ce cas que \mathscr{C} et \mathscr{C} ' sont tangentes extérieurement.

Exercice n° 3:

- 1) On donne $x \in [0, \pi]$ et on pose $f(x) = -8\sin^4 x + 6\sin^2 x 1$.
 - a) Calculer f(0), $f(\frac{\pi}{2})$ et $f(\frac{\pi}{6})$.
 - b) Montrer que $f(x) = (4\cos^4 x 3) (2\sin^2 x 1)$.
 - c) Résoudre dans l'intervalle $[0, \pi]$ l'équation f(x) = 0.
- 2) On donne $x \in]0, \pi[\setminus \{\frac{\pi}{2}\}.$
 - a) Montrer que $tgx + \frac{1}{tgx} = \frac{1}{\cos x \cdot \sin x}$.
 - b) En déduire que $tg^2x + \frac{1}{tg^2x} = \frac{1}{\sin^2 x \cdot \cos^2 x} 2$.

